ECONET EC+ / EC++ Comunicazione Industriale

Nota Applicativa 021 Versione 1.3 2021 ТИЯВО

Introduzione

Nel mercato dell'automazione industriale, le nuove tecnologie sviluppate da Turbo offrono molte opportunità agli sviluppatore e agli integratori di sistemi industriali per affrontare con successo la continua evoluzione e le sfide odierne.

I sistemi di Automazione richiedono tecnologie all'avanguardia per soddisfare le esigenze dei clienti per le applicazioni che si basano su controllori a logica programmabile (PLC), personal computer industriali, interfacce uomo-macchina (HMI) e si integrano in sistemi complessi attraverso i protocolli standard di comunicazione. Turbo ha sviluppato una serie di soluzioni per l'automazione industriale con una piattaforma focalizzata sulle capacità di comunicazione della famiglia "EcoNet", che è stata progettata per essere integrata nei sistemi complessi di automazione.

La famiglia EcoNet

La famiglia *EcoNet* è composta da una serie di Unità di controllo definiti "Economizzatori", realizzati per il controllo delle funzioni di pulizia pneumatica dei sistemi di raccolta delle polveri in ambito industriale.

In breve, la pressione differenziale tra parte sporca e parte pulita di un filtro viene rilevata dal trasduttore digitale di cui è provvista l'Unità di Controllo, consentendo di determinarne con precisione l'ostruzione. Grazie ad una tecnologia "intelligente", l'EcoNet è in grado di gestire in autonomia l'attivazione delle valvole elettropneumatiche di pulizia solo quando è necessario, al fine di ridurre al minimo (economizzare) l'intero processo di pulizia, risparmiando energia e riducendo le attività di manutenzione dell'impianto.

Le Unità di Controllo EcoNet sono provviste di un display grafico LCD per la programmazione locale dei parametri di funzionamento, e di una serie di interfacce alle quali collegare opportunamente le periferiche dell'impianto. Di seguito sono riportati gli schemi generali delle Unità di Controllo EcoNet:

Modello Econet EC++

Modello Econet EC+

La comunicazione ModBus

Il ModBus è un protocollo di messaggi sul livello 7 OSI, che permette la comunicazione client/server tra più dispositivi collegati su diversi tipi di bus o reti.

Il protocollo ModBus è supportato dalle Unità di Controllo EC+ e EC++, che sono provviste di serie di interfaccia di comunicazione seriale RS485 RTU standard o, in opzione, di moduli plug-in per la comunicazione in modalità TCP/IP su rete Ethernet o WiFi.

Questa caratteristica permette di trasferire informazioni dalle Unità di Controllo Turbo (slave) a un supervisore remoto (Master) come un PLC, un personal Computer o un Pannello operatore HMI.

Questa è la tipica configurazione di una rete seriale RS485:

Grazie ad un modulo plug-in di espansione, le unità di Controllo EcoNet possono anche supportare la comunicazione TCP/IP su reti Ethernet cablate e/o WiFi:

ТИЯВО

Collegamenti degli Econet

Le Unità di Controllo EcoNet hanno una porta seriale RS485 standard, disponibile sulla morsettiera e accessibile dall'utente per realizzare il collegamento con la rete ModBus esistente.

Shield

A(+) B(-) RS 485

Modello EC+

La porta seriale "A" ModBus RS485 è disponibile sul connettore superiore di P9 e i riferimenti per il corretto cablaggio sono i seguenti:

ТИЯВО

- 42 = RS485 terminale A (+)
- 41 = RS485 terminale B (-)
- 40 = Schermo del cavo (consigliato)

Modello EC++

La porta seriale "B" ModBus RS485 è disponibile sul connettore inferiore di P9 e i riferimenti per il corretto cablaggio sono i seguenti:

21 = RS485 terminale A (+) 20 = RS485 terminale B (-)

19 = Schermo del cavo (consigliato)

<u>Nota</u>: nel modello EC++ il connettore superiore P9 è riservato per il collegamento di una eventuale sonda triboelettrica digitale.

100 - 240Vac Main Supply

Se l'unità di Controllo EC++ è provvista del modulo plug-in opzione Ethernet, il connettore per il collegamento ad una rete Ethernet esistente è accessibile dall'utente nella parte bassa a sinistra delle morsettiere.

Modello EC++ ETHERNET

Il connettore Ethernet è un plug standard posizionato nella parte bassa del dispositivo, vicino al trasduttore di pressione.

ТИЯВО

Nell'immagine a fianco la freccia gialla indica la corretta modalità di inserimento del cavo proveniente dalla rete esistente.

Se l'Unità di Controllo EC++ è invece provvista di modulo plug-in WiFi (e relativa antenna montata sul contenitore), l'utente non dovrà utilizzare il cavo di collegamento ma dovrà avere a disposizione un accesso ad un router WiFi esistente.

Il cavo di comunicazione RS485

La lunghezza e la qualità della linea di comunicazione RS485 condizionano sensibilmente l'affidabilità del sistema di comunicazione. Tenere in considerazione che la lunghezza massima permessa per un bus seriale RS485 è di 1200mt, con una velocità di comunicazione ridotta a 9600Baud.

Requisiti del cavo di comunicazione

I requisiti di base del cavo per ottenere una buona qualità di comunicazione sono:

- 1) Sezione: min 2 +1 x0,32mm² (doppino, a singolo cavo)
- 2) Calza di rame schermante
- 3) Doppino intrecciato
- 4) Resistenza ai raggi UV (solo per installazioni in esterno)
- 5) Cavo CAT.5

Cavo RS485 suggerito :

Produttore	:	Belden
Applicazione	:	Automazione industrial
Codice prodotto	:	3106A
Poli	:	Doppino intrecciato, singolo polo
Schermo	:	Si
Tipo	:	Resistente agli UV

Il terminale di riferimento

Le Unità di Controllo EcoNet hanno un terminale GND (ground) isolato sulla morsettiera di comunicazione, così da fornire un riferimento di tensione comune per tutti i trasmettitori/ricevitori RS485. In questo caso, tutti i terminali GND dei dispositivo collegati alla rete devo essere collegati insieme, usando un altro cavo.

Avvertenze:

- 1) Non utilizzare la calza di rame schermante per questo collegamento !
- 2) Non collegare il terminale GND isolato alla terra dell'impianto !

Configurazione di base della comunicazione

Dopo aver collegato l'Unità di Controllo alla rete di comunicazione, l'utente dovrà configurare, attraverso l'apposito menu, i parametri di comunicazione degli EcoNet EC+ / EC++ .

Accedendo ai menu disponibili sull'interfaccia locale dell'Unità di Controllo, sarà necessario navigare attraverso le voci disponibili fino a selezionare il menu "ModBus":

comunicazione.

Premere il pulsante "menu" nella finestra principale e poi il pulsante " \downarrow " and " \uparrow " per raggiungere il menu "ModBus". Premere il pulsante "OK" per accedere ai parametri di

ТИЯВО

Premere I pulsanti "+" and "-" per configurare il valore di indirizzo di rete dell'Unità di Controllo, poi spostarsi sugli altri parametri per configurare la velocità di comunicazione, la parità e il bit di stop secondo i requisiti della rete di comunicazione alla quale si è collegati.

Tipicamente, I dispositivi ModBus usano il formato 8,N,1.

Scegliere la giusta velocità di comunicazione

Le capacità parassite della linea di comunicazione aumentano con l'aumentare della lunghezza della linea di trasmissione, perciò si consiglia di limitare la velocità massima del Bus di comunicazione. Una legge empirica stabilisce i seguenti valori:

Velocità (bps)	Max lunghezza (mt)
115200	85
57600	170
38400	250
19200	500
9600	1000

Una buona regola è quella di rispettare una distanza minima di 1mt tra I dispositivi che sono collegati alla stessa rete di comunicazione.

APNt021 EPCUMR En Rev.1.3	TURBO s.r.l. Dust Filter Components Via Centro Industriale Europeo, 33 - Turate (CO) Italy Tel ++39.0362 574024 Fax ++39.0362 574092

Comunicare con la rete

Una volta che l'Unità di Controllo EcoNet EC+ /EC++ è collegata alla rete RS485 ModBus, l'utente può scegliere di utilizzare l'applicativo software di Turbo, chiamato "PC Panel" o sviluppare la propria applicazione per accedere ai registri ModBus del dispositivo. E' bene tenere in considerazione che, nella rete di comunicazione, l'EcoNet è considerato come un dispositivo "Slave".

In ogni caso, per ragioni di sicurezza, non è permesso ad un qualsiasi dispositivo esterno di controllare in modo diretto le periferiche dell'Unità di Controllo ma è concessa solamente la programmazione dei suoi parametri, l'attivazione/disattivazione delle funzioni, oltre che seguirne in tempo reale l'esecuzione.

Econet PC-Panel Software

Turbo ha realizzato un'applicazione software per personal computer, chiamata "PC-Panel", per la gestione dei parametri e delle funzionalità dei dispositivi EcoNet.

Sviluppato per le piattaforme Windows (WinXP, Win7/8, Win10), il software "PC-Panel" mette a disposizione dell'utente un'interfaccia utente di facile impiego per configurare tutti I parametri e i registri dell'Unità di Controllo, leggerne lo stato di funzionamento, aviare/fermare I cicli di pulizia e controllare l'intero Sistema di pulizia.

Grazie all'interfaccia utente intuitive, l'utente può navigare attraverso le pagine di informazioni per controllare I parametri e seguire in tempo reale lo stato di funzionamento.

L'interfaccia utente è personalizzabile con il proprio logo, il linguaggio e le informazioni utili, in modo da soddisfare ogni esigenza dell'utente.

Insieme alla confezione dell'applicativo software "PC-Panel" viene fornito un cavo convertitore seriale USB-RS485. Il cavo è il modo più semplice per collegare la porta di comunicazione RS485 del dispositivo ad un personal computer. La velocità massima supportata è di 3Mbaud.

I driver software USB-RS485 sono disponibili nel sito <u>http://www.ftdichip.com</u>, e sono necessari per gestire la porta COM virtuale (VCP). Questa modalità consente di emulare una porta di emulazione seriale su USB. Nello stesso sito è disponibile un driver USB FTDI D2XX, una DLL che può essere usata per accedere direttamente al chip FT232R di cui è provvisto il cavo.

Il convertitore seriale USB-RS485 è provvisto di una serie di conduttori così utilizzati:

Arancio = RS485 terminale A (+) Giallo = RS485 terminale B (-) Nero = terminale schermo

Gli altri conduttori, non utilizzati, devono essere posti in posizioni separate e isolate tra loro. L'immagine mostra il collegamento del cavo USB-RS485 all'Unità EC+.

Nota: Richiedere all'ufficio commerciale Turbo informazioni per l'acquisto del pacchetto software e della licenza d'uso.

Seguendo il protocollo standard di comunicazione ModBus, è possibile leggere e scrivere I registri dell'Unità di Controllo EcoNet per configurare i parametri, eseguire le funzioni e controllare lo stato dell'impianto in tempo reale.

Composizione del messaggio ModBus

ТИЯВО

Device Address Func ID Data CRC Indirizzo del dispositivo nella rete, compreso tra 1 e 247. Il valore "0" non è consentito. La funzione 03(Read Holding registers) e la funzione 06(Write Single register) are supportate. Il numero/valore del registro EcoNet (AND del valore se in scrittura); Il codice CRC16 calcolato.

Lista dei principali registri EcoNet

Di seguito viene riportata la lista dei principali registri per EcoNet EC+ / EC++:

Parametri generali				
Descrizione	Pagistro	Accesso	Valoro	Nota
DESCHIZIONE	Registro	ALLESSU	VUIDIE	NOLE
Versione software del dispositivo	0x0000	R	XX	dove xx = versione SW
Versione hardware del dispositivo	0x0001	R	уу	dove yy = versione HW
Numero seriale	0x000C	R/W	ZZ	dove zz = s/n impostato in fabbrica
Linguaggio del menu	0x000E	R/W	0	0=ITA, 1=ENG, 2=FR, 3=DE, 4=ESP
Indirizzo ModBus del dispositivo	0x006A	R/W	1	1÷247
Velocità di comunicazione ModBus	0x006B	R/W	2	0=38400 Baud
				1=19200 Baud
				2= 9600 Baud
Bit parità ModBus	0x006C		0	0=No Parità
				1=Parità dispari
				2=Parità pari
Bit stop ModBus	0x006D		1	0=2 Stop bit 1=1 Stop bit
Abilita/disabilita funzione Multi-sparo	0x000D	R/W	0	0=Disabilita funzione Multi-sparo
				1=Abilita funzione Multi-sparo

Configurazione di Base				
Descrizione	Registro	Accesso	Valore	Note
Modo operativo	0x0010	R/W	0	0=Manuale
				1=Automatico
				2=Speciale
				3=Proporzionale
Numero valvole collegate al sistema	0x0013	R/W	3	Valvole montate nel Sistema
Tempo attivazione valvola	0x0012	R/W	200	msec (tempo di sparo)
Tempo pausa attivazione	0x0011	R/W	20	Sec (tempo di pausa)
Unità di misura del dP pressione	0x0014	R/W	2	0=H2O, 1=Bar, 2=Pa, 3=Psi
Soglia pressione per START ciclo Automatico	0x0015	R/W	800	microH2O, microBar, mPascal, microPsi
Soglia pressione per STOP ciclo Automatico	0x0016	R/W	400	microH2O, microBar, mPascal, microPsi

Parametri operativi di stato				
Descrizione	Registro	Accesso	Valore	Note
Valore dP pressione	0x0002	R	0	in Pa
Valore dP pressione	0x0003	R	0	in mBar/100
Valore dP pressione	0x0004	R	0	in mmH20/10
Valore dP pressione	0x0005	R	0	in inchWC/1000
Stato del ciclo	0x0008	R/W	2	1=START 2=STOP
Stato della Post Pulizia	0x000A	R	0	0=No Post cleaning
				1=Post cleaning in esecuzione
Valvola in attivazione	0x000B	R		Valvola in attivazione
Abilita modifica parametri da UI	0x000F	R/W	1	0=Disabilita 1=Abilita

Funzioni avanzate di pulizia

Descrizione	Registro	Accesso	Valore	Note
Soglia di START dP Post Pulizia	0x0020	R/W	100	microH2O, microBar, mPascal, microPsi
Cicli di Post Pulizia (PCC)	0x0021	R/W	2	Numero di cicli di Post Pulizia da eseguire
Tempo di pausa in Post Pulizia	0x0022	R/W	10	Sec
Tempo di sparo in Post Pulizia	0x0023	R/W	200	Msec
Funzione Pre-coating	0x0024	R/W	0	0=Disabilita 1=Abilita
Soglia START dP Pre-coating	0x0025	R/W	2000	microH2O, microBar, mPascal, microPsi
Cicli di pulizia SPECIALE	0x0026	R/W	2	Numero di cicli SPECIALI da eseguire
Tempo di pausa pulizia SPECIALE	0x0027	R/W	20	Sec

Configurazione allarmi				
Descrizione	Registro	Accesso	Valore	Note
Soglia Max dP pressione	0x0030	R/W	3000	microH2O, microBar, mPascal, microPsi
Abilita allarme Min dP pressione	0x0031	R/W	0	0=Disabilita 1=Abilita
Soglia Min dP pressione	0x0032	R/W	200	microH2O, microBar, mPascal, microPsi
Abilita Allarme contaore Ventilatore	0x0033	R/W	0	0=Disabilita 1=Abilita
Soglia allarme contaore Ventilatore	0x0034	R/W	1000	in ore (hh)

Configurazione avanzata

Descrizione	Reaistro	Accesso	Valore	Note
DESCRIZIONE	negistio	ALLUSSO	VUIDIC	Note
Abilita lo STOP a fine ciclo di pulizia	0x0052	R/W	1	0=Disabilita 1=Abilita
Valore calibrazione Shunt corrente	0x0053	R/W	0	ATTENZIONE: taratura di fabbrica !
Tempo accensione backlight LCD	0x0054	R/W	0	0 = Sempre acceso > 0 = Acceso per secondi
Stato del relè 1	0x0055	R/W	1	0=Normalmente APERTO (No)
				1=Normalmente CHIUSO (Nc)
Modo allarme Relè 1	0x0056	R/W	0	0=temporizzato 1=Memoria
Tempo attivazione Relè 1	0x0057	R/W	10	in sec. Usato se in modo temporizzato
Stato del relè 2	0x0058	R/W	1	0=Normalmente APERTO (No)
				1=Normalmente CHIUSO (Nc)
Modo allarme Relè 2	0x0059	R/W	0	0=temporizzato 1=Memoria
Tempo attivazione Relè 2	0x005A	R/W	10	in sec. Usato se in modo temporizzato
Abilita Buzzer di segnalazione	0x005B	R/W	1	0=Disabilita 1=Abilita
Uscita 4÷20mA	0x005C	R/W	1	0= OFF 1=Uscita valore dP pressione

Test & calibrazione

Descrizione	Registro	Accesso	Valore	Note
Conversione dP - KPa	0x0050	R/W	12500	ATTENZIONE: taratura di fabbrica !
Correzione Zero dP offset	0x0051	R/W	0	Usato per correggere il valore di Zero dP
Numero valvola da attivare in test	0x0040	R/W	1	Usato per testare le valvole singolarmente
Calibrazione Zero dP offset	0x0041	R/W	0	ATTENZIONE: taratura di fabbrica !
Calibrazione uscita 4mA	0x0042	R/W	600	ATTENZIONE: taratura di fabbrica !
Calibrazione uscita 20mA	0x0043	R/W	3000	ATTENZIONE: taratura di fabbrica !
Contatore Ore lavoro (low byte)	0x0048	R	0	Dalla prima accensione del dispositivo
Contatore Ore lavoro (high byte)	0x0049	R	0	Dalla prima accensione del dispositivo
Contatore attuazioni (low byte)	0x004A	R	0	Conta numero di attuazioni da prima accensione
Contatore attuazioni (high byte)	0x004B	R	0	Conta numero di attuazioni da prima accensione
Contatore Ore Ventilatore (low byte)	0x004C	R	0	Conta ore di funzionamento del ventilatore
Contatore Ore Ventilatore (high byte)	0x004D	R	0	Conta ore di funzionamento del ventilatore

Parametri interni scheda				
Descrizione	Registro	Accesso	Valore	Note
Forza RESET dell'allarme	0x04FD	R/W	0	1=Rimuove allarme
Forza RESET del Buzzer	0x04FE	R/W	0	1= Spegne Buzzer
Presenza di Allarme	0x0500	R	0	0=Assente 1=Presente
Allarme di configurazione	0x0501	R	0	0=Assente 1=Presente
Allarme per Max dP pressione	0x0502	R	0	0=Assente 1=Presente
Allarme per Min dP pressione	0x0503	R	0	0=Assente 1=Presente
Allarme raggiunte ore Ventilatore	0x0504	R	0	0=Assente 1=Presente
Allarme ingresso di Post Pulizia	0x0505	R	0	0=Assente 1=Presente
Allarme ingresso Abilitazione remota	0x0506	R	0	0=Assente 1=Presente
Allarme generale shunt corrente valvola	0x0507	R	0	0=Assente 1=Presente
Allarme shunt Valvola 1	0x0508	R	0	0=Assente 1=Presente
Allarme shunt Valvola (n)	0x05yy	R	0	dove yy= 0x0520 + n (0÷126 valvole)
Allarme shunt Valvola 127	0x059E	R	0	0=Assente 1=Presente
Ultimo allarme rilevato	0x05A1	R	0	Posizione della valvola su ultimo allarme
Precedente 1 allarme	0x05A2	R	0	Posizione del 1º attuatore guasto
Precedente 2 allarme	0x05A3	R	0	Posizione del 2º attuatore guasto
Precedente 3 allarme	0x05A4	R	0	Posizione del 3º attuatore guasto
Precedente 4 allarme	0x05A5	R	0	Posizione del 4º attuatore guasto
Precedente 5 allarme	0x05A6	R	0	Posizione del 5º attuatore guasto
Allarme per valvola mancante	0x005D	R	3	Num. di tentativi di attivazione prima di allarme
Modello dispositivo	0x04D0	R	0	0=Econet Plus; 1=Econet Ultra
Temperatura interna della scheda	0x04ED	R	0	in Celsius
Valore Ingresso digitale 1	0x04E2	R	0	0=Presente; 1= Assente
Valore Ingresso digitale 2	0x04E3	R	0	0=Presente; 1= Assente
Valore Ingresso digitale 3	0x04E4	R	0	0=Presente; 1= Assente
Valore Ingresso digitale 4	0x04E5	R	0	0=Presente; 1= Assente
Valore Uscita digitale 1	0x04E6	R	0	0=Attiva; 1=Non attiva
Valore Uscita digitale 2	0x04E7	R	0	0=Attiva; 1=Non attiva
Valore Uscita digitale 3	0x04E8	R	0	0=Attiva; 1=Non attiva
Valore Uscita digitale 4	0x04E9	R	0	0=Attiva; 1=Non attiva

Le Unità di Controllo EcoNet EC+ / EC++ sono provviste di registri ModBus dedicati per gestire alcune funzioni speciali.

Per poterle utilizzare al meglio, è necessario fare riferimento ai documenti specifici, disponibili su richiesta.

Pannello operatore "Bega" Turbo

Il portafoglio dei prodotti Turbo include anche un pannello operatore, il "BEGA", che si collega all'Unità di Controllo EcoNet EC+ / EC++ attraverso la porta di comunicazione seriale RS485 ModBus.

	I UNI	30	Versione Versione	SW Centrale HW Centrale	
Pre	kDa millar mmillar tricWC	Stato Ing Post-Puliz Abilitazion Abilitazione 1 [Non Allarm	ressi/Uscite la Manuale rie Remota Ventilatore Utilizzato] p e Generico	Sta Mo Sta	to Generale do Operativo to Operativo Attuatore T On [ms.] T Off [sec]
ö		Allarm (Non (Non Menu	Utilizzato] Utilizzato] Allarmi	Emissione Pol	veri (gr/m3)

Il pannello operatore "BEGA" è in sostanza una interfaccia utente evoluta per I prodotti EcoNet. E' equipaggiato con un Sistema operative WinCE 5.0 e una versione del software "PC-Panel" Turbo già pre-installata e pronta all'uso.

ТИЯВО

Attraverso I file di configurazione, l'utente può cambiare il logo, le informazioni da visualizzare e molto altro.

Il pannello operatore "BEGA" è provvisto di porta USB alla quale è possibile collegare una chiavetta sulla quale memorizzare il log dei dati durante il funzionamento dell'impianto.

Il pannello operatore "BEGA" viene fornito complete di cavo di collegamento all'Unità di Controllo EcoNet EC+/EC++.

L'unità di Controllo alimenta direttamente il pannello operatore "BEGA" e comunica con esso attraverso il cavo, utilizzando la porta seriale RS485 disponibile di serie.

Richiedere all'ufficio commerciale Turbo informazioni per l'acquisto del pannello operatore HMI "BEGA" Turbo e la documentazione relativa all'installazione e utilizzo.

Comunicazione Ethernet e WiFi

Le Unità di Controllo EcoNet EC+ /EC++ sono fornite con porta seriale RS485 ModBus di serie. Tuttavia, è possibile richiedere una versione equipaggiata con una scheda "plug-in" di comunicazione come:

- Scheda plug-in Ethernet TCP/IP;
- Scheda plug-in Wi-Fi TCP/IP;
- Scheda plug-in Ethernet & Wi-Fi;

Richiedere all'ufficio commerciale Turbo informazioni circa l'acquisto di Unità di Controllo EcoNet pre-configurate con scheda plug-in Ethernet e/o Wi-Fi plug-in.

Per poterle utilizzare al meglio, è necessario fare riferimento ai documenti specifici, disponibili su richiesta.

APNt021 EPCUMR En Rev.1.3	TURBO s.r.l. Dust Filter Components Via Centro Industriale Europeo, 33 - Turate (CO) Italy Tel ++39 0362 574024 Fax ++39 0362 574092	

Appendice A – Documenti di riferimento

- APNt023 APNt024 APNt025
- « Attuazione multipla » nota applicativa « Configurazione WiFi & ETH » nota applicativa «Sonda triboelettrica Analogica & digitale » nota applicativa

Appendice B – Revisioni documento

Versione bozza	Prima bozza	Dic 2017
Versione 1.0	Primo rilascio	Gen 30, 2018
Versione 1.1	Aggiornata sezione cavo di comunicazione	Apr 23,2018
Versione 1.2	Aggiornata lista registri ModBus	Sett 16, 2019
Versione 1.3	Aggiornato indirizzo sede Turbo	Nov 3, 2021

ТИЯВО